{"messages":
[{"role": "system", "content": "Answer the question by choosing the answer that can be inferred from the given text. Report only the correct answer's number using the following JSON format: {\"answer_id\":\"\"}."},
{"role": "user", "content": "Text:\nOne of the most common problems when trying to convert a movie to DVD format is the overscan. Most televisions are made in a way to please the general public. For that reason, everything you see on the TV had the borders cut, top, bottom and sides. This is made to ensure that the image covers the whole screen. That is called overscan. Unfortunately, when you make a DVD, it's borders will most likely be cut too, and if the video had subtitles too close to the bottom, they won't be fully shown.\nQuestion: According to the passage, which of the following problems might one encounter when converting a movie to DVD format?\nPossible answers:\n1) An image that doesn't fill the entire screen\n2) Partially cut subtitles\n3) An image that fills the entire screen\n4) Cut borders\n"}]
}
{"answer_id":""}
{"answer_id":"1"}
```json
{"answer_id":"1"}
```
The correct answer is 1
The sky is blue, isn't it?
Model | Output is the required JSON object | Output contains the required JSON object | Output contains a number | Output is a complete failure |
---|---|---|---|---|
BSC-LT-salamandra-7b-instruct | 0.000 | 0.000 | 0.981 | 0.019 |
claude-3-5-haiku-20241022 | 0.000 | 0.999 | 0.001 | 0.000 |
claude-3-7-sonnet-20250219 | 0.000 | 0.999 | 0.000 | 0.001 |
dolphin3 | 0.000 | 0.998 | 0.002 | 0.000 |
gemma2:27b | 0.000 | 0.994 | 0.005 | 0.000 |
gemma2:9b | 0.000 | 0.994 | 0.006 | 0.000 |
gemma3 | 0.000 | 0.997 | 0.003 | 0.000 |
gemma3:12b | 0.000 | 1.000 | 0.000 | 0.000 |
gemma3:27b | 0.000 | 1.000 | 0.000 | 0.000 |
gpt-3.5-turbo | 0.000 | 1.000 | 0.000 | 0.000 |
gpt-4o | 0.000 | 1.000 | 0.000 | 0.000 |
gpt-4o-mini | 0.000 | 1.000 | 0.000 | 0.000 |
llama3.1 | 0.000 | 0.999 | 0.001 | 0.000 |
llama3.1:70b | 0.000 | 0.999 | 0.001 | 0.000 |
llama3.2 | 0.000 | 1.000 | 0.000 | 0.000 |
llama3.3 | 0.000 | 0.999 | 0.001 | 0.000 |
mistral-large | 0.000 | 0.999 | 0.000 | 0.001 |
mistral-nemo | 0.000 | 0.999 | 0.000 | 0.001 |
mistral-small | 0.000 | 0.999 | 0.001 | 0.000 |
mistral-small3.1 | 0.000 | 1.000 | 0.000 | 0.000 |
nemotron | 0.000 | 0.990 | 0.010 | 0.000 |
olmo2:13b | 0.000 | 0.983 | 0.017 | 0.000 |
openGPT-X-Teuken-7B-instruct-commercial-v0.4 | 0.000 | 0.544 | 0.452 | 0.004 |
openGPT-X-Teuken-7B-instruct-research-v0.4 | 0.000 | 0.683 | 0.307 | 0.010 |
phi4 | 0.000 | 0.977 | 0.012 | 0.011 |
phi4-mini | 0.000 | 1.000 | 0.000 | 0.000 |
qwen2.5:1.5b | 0.000 | 0.658 | 0.339 | 0.003 |
qwen2.5:72b | 0.000 | 0.997 | 0.002 | 0.001 |
utter-project-EuroLLM-1.7B-Instruct | 0.000 | 0.000 | 1.000 | 0.000 |
utter-project-EuroLLM-9B-Instruct | 0.000 | 0.050 | 0.940 | 0.010 |